3.11.82 \(\int \frac {2-5 x}{x^{7/2} (2+5 x+3 x^2)^{5/2}} \, dx\) [1082]

3.11.82.1 Optimal result
3.11.82.2 Mathematica [C] (verified)
3.11.82.3 Rubi [A] (verified)
3.11.82.4 Maple [A] (verified)
3.11.82.5 Fricas [C] (verification not implemented)
3.11.82.6 Sympy [F(-1)]
3.11.82.7 Maxima [F]
3.11.82.8 Giac [F]
3.11.82.9 Mupad [F(-1)]

3.11.82.1 Optimal result

Integrand size = 25, antiderivative size = 256 \[ \int \frac {2-5 x}{x^{7/2} \left (2+5 x+3 x^2\right )^{5/2}} \, dx=\frac {2 (38+45 x)}{3 x^{5/2} \left (2+5 x+3 x^2\right )^{3/2}}-\frac {9521 \sqrt {x} (2+3 x)}{30 \sqrt {2+5 x+3 x^2}}-\frac {1541+1965 x}{3 x^{5/2} \sqrt {2+5 x+3 x^2}}+\frac {1252 \sqrt {2+5 x+3 x^2}}{5 x^{5/2}}-\frac {1733 \sqrt {2+5 x+3 x^2}}{6 x^{3/2}}+\frac {9521 \sqrt {2+5 x+3 x^2}}{30 \sqrt {x}}+\frac {9521 (1+x) \sqrt {\frac {2+3 x}{1+x}} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{15 \sqrt {2} \sqrt {2+5 x+3 x^2}}-\frac {1733 (1+x) \sqrt {\frac {2+3 x}{1+x}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{2 \sqrt {2} \sqrt {2+5 x+3 x^2}} \]

output
2/3*(38+45*x)/x^(5/2)/(3*x^2+5*x+2)^(3/2)+1/3*(-1541-1965*x)/x^(5/2)/(3*x^ 
2+5*x+2)^(1/2)-9521/30*(2+3*x)*x^(1/2)/(3*x^2+5*x+2)^(1/2)+9521/30*(1+x)^( 
3/2)*(1/(1+x))^(1/2)*EllipticE(x^(1/2)/(1+x)^(1/2),1/2*I*2^(1/2))*2^(1/2)* 
((2+3*x)/(1+x))^(1/2)/(3*x^2+5*x+2)^(1/2)-1733/4*(1+x)^(3/2)*(1/(1+x))^(1/ 
2)*EllipticF(x^(1/2)/(1+x)^(1/2),1/2*I*2^(1/2))*2^(1/2)*((2+3*x)/(1+x))^(1 
/2)/(3*x^2+5*x+2)^(1/2)+1252/5*(3*x^2+5*x+2)^(1/2)/x^(5/2)-1733/6*(3*x^2+5 
*x+2)^(1/2)/x^(3/2)+9521/30*(3*x^2+5*x+2)^(1/2)/x^(1/2)
 
3.11.82.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 21.21 (sec) , antiderivative size = 177, normalized size of antiderivative = 0.69 \[ \int \frac {2-5 x}{x^{7/2} \left (2+5 x+3 x^2\right )^{5/2}} \, dx=\frac {-2 \left (12-130 x+39836 x^2+154195 x^3+192342 x^4+77985 x^5\right )-19042 i \sqrt {2+\frac {2}{x}} \sqrt {3+\frac {2}{x}} x^{7/2} \left (2+5 x+3 x^2\right ) E\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right )|\frac {3}{2}\right )-6953 i \sqrt {2+\frac {2}{x}} \sqrt {3+\frac {2}{x}} x^{7/2} \left (2+5 x+3 x^2\right ) \operatorname {EllipticF}\left (i \text {arcsinh}\left (\frac {\sqrt {\frac {2}{3}}}{\sqrt {x}}\right ),\frac {3}{2}\right )}{60 x^{5/2} \left (2+5 x+3 x^2\right )^{3/2}} \]

input
Integrate[(2 - 5*x)/(x^(7/2)*(2 + 5*x + 3*x^2)^(5/2)),x]
 
output
(-2*(12 - 130*x + 39836*x^2 + 154195*x^3 + 192342*x^4 + 77985*x^5) - (1904 
2*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(7/2)*(2 + 5*x + 3*x^2)*EllipticE[I*Arc 
Sinh[Sqrt[2/3]/Sqrt[x]], 3/2] - (6953*I)*Sqrt[2 + 2/x]*Sqrt[3 + 2/x]*x^(7/ 
2)*(2 + 5*x + 3*x^2)*EllipticF[I*ArcSinh[Sqrt[2/3]/Sqrt[x]], 3/2])/(60*x^( 
5/2)*(2 + 5*x + 3*x^2)^(3/2))
 
3.11.82.3 Rubi [A] (verified)

Time = 0.51 (sec) , antiderivative size = 276, normalized size of antiderivative = 1.08, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {1235, 25, 1235, 27, 1237, 1237, 27, 1237, 27, 1240, 1503, 1413, 1456}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {2-5 x}{x^{7/2} \left (3 x^2+5 x+2\right )^{5/2}} \, dx\)

\(\Big \downarrow \) 1235

\(\displaystyle \frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}-\frac {1}{3} \int -\frac {405 x+193}{x^{7/2} \left (3 x^2+5 x+2\right )^{3/2}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {1}{3} \int \frac {405 x+193}{x^{7/2} \left (3 x^2+5 x+2\right )^{3/2}}dx+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1235

\(\displaystyle \frac {1}{3} \left (-\int \frac {3 (3275 x+2504)}{2 x^{7/2} \sqrt {3 x^2+5 x+2}}dx-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \int \frac {3275 x+2504}{x^{7/2} \sqrt {3 x^2+5 x+2}}dx-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1237

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (-\frac {1}{5} \int \frac {11268 x+8665}{x^{5/2} \sqrt {3 x^2+5 x+2}}dx-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1237

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{3} \int \frac {25995 x+19042}{2 x^{3/2} \sqrt {3 x^2+5 x+2}}dx+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{6} \int \frac {25995 x+19042}{x^{3/2} \sqrt {3 x^2+5 x+2}}dx+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1237

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{6} \left (-\int -\frac {3 (9521 x+8665)}{\sqrt {x} \sqrt {3 x^2+5 x+2}}dx-\frac {19042 \sqrt {3 x^2+5 x+2}}{\sqrt {x}}\right )+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{6} \left (3 \int \frac {9521 x+8665}{\sqrt {x} \sqrt {3 x^2+5 x+2}}dx-\frac {19042 \sqrt {3 x^2+5 x+2}}{\sqrt {x}}\right )+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1240

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{6} \left (6 \int \frac {9521 x+8665}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}-\frac {19042 \sqrt {3 x^2+5 x+2}}{\sqrt {x}}\right )+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1503

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{6} \left (6 \left (8665 \int \frac {1}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+9521 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}\right )-\frac {19042 \sqrt {3 x^2+5 x+2}}{\sqrt {x}}\right )+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1413

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{6} \left (6 \left (9521 \int \frac {x}{\sqrt {3 x^2+5 x+2}}d\sqrt {x}+\frac {8665 (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^2+5 x+2}}\right )-\frac {19042 \sqrt {3 x^2+5 x+2}}{\sqrt {x}}\right )+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

\(\Big \downarrow \) 1456

\(\displaystyle \frac {1}{3} \left (-\frac {3}{2} \left (\frac {1}{5} \left (\frac {1}{6} \left (6 \left (\frac {8665 (x+1) \sqrt {\frac {3 x+2}{x+1}} \operatorname {EllipticF}\left (\arctan \left (\sqrt {x}\right ),-\frac {1}{2}\right )}{\sqrt {2} \sqrt {3 x^2+5 x+2}}+9521 \left (\frac {\sqrt {x} (3 x+2)}{3 \sqrt {3 x^2+5 x+2}}-\frac {\sqrt {2} (x+1) \sqrt {\frac {3 x+2}{x+1}} E\left (\arctan \left (\sqrt {x}\right )|-\frac {1}{2}\right )}{3 \sqrt {3 x^2+5 x+2}}\right )\right )-\frac {19042 \sqrt {3 x^2+5 x+2}}{\sqrt {x}}\right )+\frac {8665 \sqrt {3 x^2+5 x+2}}{3 x^{3/2}}\right )-\frac {2504 \sqrt {3 x^2+5 x+2}}{5 x^{5/2}}\right )-\frac {1965 x+1541}{x^{5/2} \sqrt {3 x^2+5 x+2}}\right )+\frac {2 (45 x+38)}{3 x^{5/2} \left (3 x^2+5 x+2\right )^{3/2}}\)

input
Int[(2 - 5*x)/(x^(7/2)*(2 + 5*x + 3*x^2)^(5/2)),x]
 
output
(2*(38 + 45*x))/(3*x^(5/2)*(2 + 5*x + 3*x^2)^(3/2)) + (-((1541 + 1965*x)/( 
x^(5/2)*Sqrt[2 + 5*x + 3*x^2])) - (3*((-2504*Sqrt[2 + 5*x + 3*x^2])/(5*x^( 
5/2)) + ((8665*Sqrt[2 + 5*x + 3*x^2])/(3*x^(3/2)) + ((-19042*Sqrt[2 + 5*x 
+ 3*x^2])/Sqrt[x] + 6*(9521*((Sqrt[x]*(2 + 3*x))/(3*Sqrt[2 + 5*x + 3*x^2]) 
 - (Sqrt[2]*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*EllipticE[ArcTan[Sqrt[x]], -1/ 
2])/(3*Sqrt[2 + 5*x + 3*x^2])) + (8665*(1 + x)*Sqrt[(2 + 3*x)/(1 + x)]*Ell 
ipticF[ArcTan[Sqrt[x]], -1/2])/(Sqrt[2]*Sqrt[2 + 5*x + 3*x^2])))/6)/5))/2) 
/3
 

3.11.82.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 1235
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d + e*x)^(m + 1)*(f*(b*c*d - b^2*e + 2 
*a*c*e) - a*g*(2*c*d - b*e) + c*(f*(2*c*d - b*e) - g*(b*d - 2*a*e))*x)*((a 
+ b*x + c*x^2)^(p + 1)/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))), x] 
 + Simp[1/((p + 1)*(b^2 - 4*a*c)*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^m 
*(a + b*x + c*x^2)^(p + 1)*Simp[f*(b*c*d*e*(2*p - m + 2) + b^2*e^2*(p + m + 
 2) - 2*c^2*d^2*(2*p + 3) - 2*a*c*e^2*(m + 2*p + 3)) - g*(a*e*(b*e - 2*c*d* 
m + b*e*m) - b*d*(3*c*d - b*e + 2*c*d*p - b*e*p)) + c*e*(g*(b*d - 2*a*e) - 
f*(2*c*d - b*e))*(m + 2*p + 4)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, 
 m}, x] && LtQ[p, -1] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p] 
)
 

rule 1237
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[(e*f - d*g)*(d + e*x)^(m + 1)*((a + b* 
x + c*x^2)^(p + 1)/((m + 1)*(c*d^2 - b*d*e + a*e^2))), x] + Simp[1/((m + 1) 
*(c*d^2 - b*d*e + a*e^2))   Int[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p*Simp[ 
(c*d*f - f*b*e + a*e*g)*(m + 1) + b*(d*g - e*f)*(p + 1) - c*(e*f - d*g)*(m 
+ 2*p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && LtQ[m, -1 
] && (IntegerQ[m] || IntegerQ[p] || IntegersQ[2*m, 2*p])
 

rule 1240
Int[((f_) + (g_.)*(x_))/(Sqrt[x_]*Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2]), 
x_Symbol] :> Simp[2   Subst[Int[(f + g*x^2)/Sqrt[a + b*x^2 + c*x^4], x], x, 
 Sqrt[x]], x] /; FreeQ[{a, b, c, f, g}, x]
 

rule 1413
Int[1/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b 
^2 - 4*a*c, 2]}, Simp[(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q)*x^2)/(2*a + 
(b - q)*x^2)]/(2*a*Rt[(b - q)/(2*a), 2]*Sqrt[a + b*x^2 + c*x^4]))*EllipticF 
[ArcTan[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; 
 FreeQ[{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1456
Int[(x_)^2/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbol] :> With[{q = 
 Rt[b^2 - 4*a*c, 2]}, Simp[x*((b - q + 2*c*x^2)/(2*c*Sqrt[a + b*x^2 + c*x^4 
])), x] - Simp[Rt[(b - q)/(2*a), 2]*(2*a + (b - q)*x^2)*(Sqrt[(2*a + (b + q 
)*x^2)/(2*a + (b - q)*x^2)]/(2*c*Sqrt[a + b*x^2 + c*x^4]))*EllipticE[ArcTan 
[Rt[(b - q)/(2*a), 2]*x], -2*(q/(b - q))], x] /; PosQ[(b - q)/a]] /; FreeQ[ 
{a, b, c}, x] && GtQ[b^2 - 4*a*c, 0]
 

rule 1503
Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4], x_Symbo 
l] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[d   Int[1/Sqrt[a + b*x^2 + c*x^4] 
, x], x] + Simp[e   Int[x^2/Sqrt[a + b*x^2 + c*x^4], x], x] /; PosQ[(b + q) 
/a] || PosQ[(b - q)/a]] /; FreeQ[{a, b, c, d, e}, x] && GtQ[b^2 - 4*a*c, 0]
 
3.11.82.4 Maple [A] (verified)

Time = 0.23 (sec) , antiderivative size = 282, normalized size of antiderivative = 1.10

method result size
elliptic \(\frac {\sqrt {x \left (3 x^{2}+5 x +2\right )}\, \left (-\frac {\sqrt {3 x^{3}+5 x^{2}+2 x}}{10 x^{3}}+\frac {19 \sqrt {3 x^{3}+5 x^{2}+2 x}}{12 x^{2}}-\frac {2591 \left (3 x^{2}+5 x +2\right )}{120 \sqrt {x \left (3 x^{2}+5 x +2\right )}}+\frac {\left (-\frac {190}{27}-\frac {68 x}{9}\right ) \sqrt {3 x^{3}+5 x^{2}+2 x}}{\left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right )^{2}}-\frac {2 x \left (-\frac {19765}{144}-\frac {8135 x}{48}\right ) \sqrt {3}}{\sqrt {x \left (x^{2}+\frac {5}{3} x +\frac {2}{3}\right )}}-\frac {1733 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{12 \sqrt {3 x^{3}+5 x^{2}+2 x}}-\frac {9521 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {-6 x}\, \left (\frac {E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )}{3}-F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right )\right )}{60 \sqrt {3 x^{3}+5 x^{2}+2 x}}\right )}{\sqrt {x}\, \sqrt {3 x^{2}+5 x +2}}\) \(282\)
default \(\frac {7704 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{4}-28563 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{4}+12840 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{3}-47605 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{3}+5136 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, F\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{2}-19042 \sqrt {6 x +4}\, \sqrt {3+3 x}\, \sqrt {6}\, \sqrt {-x}\, E\left (\frac {\sqrt {6 x +4}}{2}, i \sqrt {2}\right ) x^{2}+514134 x^{6}+1245870 x^{5}+959610 x^{4}+217350 x^{3}-10512 x^{2}+780 x -72}{180 x^{\frac {5}{2}} \left (1+x \right ) \left (2+3 x \right ) \sqrt {3 x^{2}+5 x +2}}\) \(318\)

input
int((2-5*x)/x^(7/2)/(3*x^2+5*x+2)^(5/2),x,method=_RETURNVERBOSE)
 
output
(x*(3*x^2+5*x+2))^(1/2)/x^(1/2)/(3*x^2+5*x+2)^(1/2)*(-1/10/x^3*(3*x^3+5*x^ 
2+2*x)^(1/2)+19/12/x^2*(3*x^3+5*x^2+2*x)^(1/2)-2591/120*(3*x^2+5*x+2)/(x*( 
3*x^2+5*x+2))^(1/2)+(-190/27-68/9*x)*(3*x^3+5*x^2+2*x)^(1/2)/(x^2+5/3*x+2/ 
3)^2-2*x*(-19765/144-8135/48*x)*3^(1/2)/(x*(x^2+5/3*x+2/3))^(1/2)-1733/12* 
(6*x+4)^(1/2)*(3+3*x)^(1/2)*(-6*x)^(1/2)/(3*x^3+5*x^2+2*x)^(1/2)*EllipticF 
(1/2*(6*x+4)^(1/2),I*2^(1/2))-9521/60*(6*x+4)^(1/2)*(3+3*x)^(1/2)*(-6*x)^( 
1/2)/(3*x^3+5*x^2+2*x)^(1/2)*(1/3*EllipticE(1/2*(6*x+4)^(1/2),I*2^(1/2))-E 
llipticF(1/2*(6*x+4)^(1/2),I*2^(1/2))))
 
3.11.82.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.08 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.61 \[ \int \frac {2-5 x}{x^{7/2} \left (2+5 x+3 x^2\right )^{5/2}} \, dx=-\frac {30380 \, \sqrt {3} {\left (9 \, x^{7} + 30 \, x^{6} + 37 \, x^{5} + 20 \, x^{4} + 4 \, x^{3}\right )} {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right ) - 85689 \, \sqrt {3} {\left (9 \, x^{7} + 30 \, x^{6} + 37 \, x^{5} + 20 \, x^{4} + 4 \, x^{3}\right )} {\rm weierstrassZeta}\left (\frac {28}{27}, \frac {80}{729}, {\rm weierstrassPInverse}\left (\frac {28}{27}, \frac {80}{729}, x + \frac {5}{9}\right )\right ) - 9 \, {\left (85689 \, x^{6} + 207645 \, x^{5} + 159935 \, x^{4} + 36225 \, x^{3} - 1752 \, x^{2} + 130 \, x - 12\right )} \sqrt {3 \, x^{2} + 5 \, x + 2} \sqrt {x}}{270 \, {\left (9 \, x^{7} + 30 \, x^{6} + 37 \, x^{5} + 20 \, x^{4} + 4 \, x^{3}\right )}} \]

input
integrate((2-5*x)/x^(7/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="fricas")
 
output
-1/270*(30380*sqrt(3)*(9*x^7 + 30*x^6 + 37*x^5 + 20*x^4 + 4*x^3)*weierstra 
ssPInverse(28/27, 80/729, x + 5/9) - 85689*sqrt(3)*(9*x^7 + 30*x^6 + 37*x^ 
5 + 20*x^4 + 4*x^3)*weierstrassZeta(28/27, 80/729, weierstrassPInverse(28/ 
27, 80/729, x + 5/9)) - 9*(85689*x^6 + 207645*x^5 + 159935*x^4 + 36225*x^3 
 - 1752*x^2 + 130*x - 12)*sqrt(3*x^2 + 5*x + 2)*sqrt(x))/(9*x^7 + 30*x^6 + 
 37*x^5 + 20*x^4 + 4*x^3)
 
3.11.82.6 Sympy [F(-1)]

Timed out. \[ \int \frac {2-5 x}{x^{7/2} \left (2+5 x+3 x^2\right )^{5/2}} \, dx=\text {Timed out} \]

input
integrate((2-5*x)/x**(7/2)/(3*x**2+5*x+2)**(5/2),x)
 
output
Timed out
 
3.11.82.7 Maxima [F]

\[ \int \frac {2-5 x}{x^{7/2} \left (2+5 x+3 x^2\right )^{5/2}} \, dx=\int { -\frac {5 \, x - 2}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}} x^{\frac {7}{2}}} \,d x } \]

input
integrate((2-5*x)/x^(7/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="maxima")
 
output
-integrate((5*x - 2)/((3*x^2 + 5*x + 2)^(5/2)*x^(7/2)), x)
 
3.11.82.8 Giac [F]

\[ \int \frac {2-5 x}{x^{7/2} \left (2+5 x+3 x^2\right )^{5/2}} \, dx=\int { -\frac {5 \, x - 2}{{\left (3 \, x^{2} + 5 \, x + 2\right )}^{\frac {5}{2}} x^{\frac {7}{2}}} \,d x } \]

input
integrate((2-5*x)/x^(7/2)/(3*x^2+5*x+2)^(5/2),x, algorithm="giac")
 
output
integrate(-(5*x - 2)/((3*x^2 + 5*x + 2)^(5/2)*x^(7/2)), x)
 
3.11.82.9 Mupad [F(-1)]

Timed out. \[ \int \frac {2-5 x}{x^{7/2} \left (2+5 x+3 x^2\right )^{5/2}} \, dx=\int -\frac {5\,x-2}{x^{7/2}\,{\left (3\,x^2+5\,x+2\right )}^{5/2}} \,d x \]

input
int(-(5*x - 2)/(x^(7/2)*(5*x + 3*x^2 + 2)^(5/2)),x)
 
output
int(-(5*x - 2)/(x^(7/2)*(5*x + 3*x^2 + 2)^(5/2)), x)